
David Feldheim, Krisha Paula Olanday, Michael Wu, Vinayaditya Shivakumar, and Kunal Patel  
{daf163,kmo88, vs338,kp451 }@scarletmail.rutgers.edu 

Advisors: Prof. Predrag Spasojevic, Rick Anderson,  and Prof. Melike Baykal-Gursoy 

Goal 
Frameworks and Methologies 

q  Develop a standard two-player game for Prof. Baykal-Gursoy’s 
research on Infrastructure Security and Game Theory. 

q  Required data collection of each players decisions (both movement 
and actions)  for analysis. 

q  Improve the previous game prototype by making it more realistic but 
still be able to capture the essential requirements for the research. 
Afterwards build new game scenarios using the standard game. 

Methodology  

Game Visuals  

References 
[1] http://www.piskelapp.com/ 
[2] http://coursescript.com/notes/interactivecomputing/objects/index.html 
[3] http://buildnewgames.com/real-time-multiplayer/ 

Acknowledgement 
We would like to thank our advisors for their time and 

contributions for our project.  

 

InSecurity: A Strategy Game on Infrastructure Security 

Research Challenges 
q Defining a basic game that complies with the research 

requirements 

q Working with new and unknown frameworks for game 
development 

q Database Connection 

Motivations and Objectives 

q Motivations 
§  Develop a fun, fair, and realistic game that people would want to play. 

§  Create various game scenarios to simulate different attacker and 
defender strategies. 

q Objectives 
§  Move away from the prototype’s shapes as objective points for players to 

attack/defend. Replace the shapes with a tiled map and redefine a node 
as an actual room or area.  

§  Remove the feel of randomness from the prototype. 

§  Obtain turn data that enables us to replay and analyze a game turn-by-
turn. 

 

q    Node.js 

q    P5.js 

q    Express.js 

q    Bootstrap 

q    Socket.io 

q    MongoDB 

Game  Mechanics 

q   Two player search and capture game. The 
player cannot see the other. 

q   Each player maneuvers the map.  

q   Attacker (player) objective: collect all keys 
located in the map without being caught 

q   Defender (player) objective: protect the keys 
and apprehend the Attacker. 

Data  Collection using MongoDB 

Turn Logic 
q  Players make their move: move, attack (for 
attacker), or do nothing. This is done simultaneously. 
q   NPC (non-player characters)  and game  objects 
change, update, or move (made optional in game 
settings) 
q    All of these changes are captured and sent to the 
database 

q Database stores:  map arrays, personalized game 
settings, and turn data. 
q   A variety of game maps are stored in the 
database. 
q   Each game instance only stores its own map 
not all maps. 

q   Data is sent and retrieved using http/ajax calls 

Handling Large Maps 


